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Number theory

The number of nonunimodular roots of a reciprocal polynomial

Dragan Stankov
Katedra Matematike RGF-a, Faculty of Mining and Geology, University of Belgrade, Belgrade, Pusina 7, Serbia

Abstract

We introduce a sequence Py of monic reciprocal polynomials with integer coefficients having the central coeffi-
cients fixed as well as the peripheral coefficients. We prove that the ratio of the number of nonunimodular roots
of P, to its degree d has a limit L when d tends to infinity. We show that if the coefficients of a polynomial can
be arbitrarily large in modulus then L can be arbitrarily close to 0. It seems reasonable to believe that if the
coefficients are bounded then the analogue of Lehmer’s Conjecture is true: either L = 0 or there exists a gap so
that L could not be arbitrarily close to 0. We present an algorithm for calculating the limit ratio and a numerical
method for its approximation. We estimated the limit ratio for a family of polynomials deduced from the powers
of a given Salem number. We calculated the limit ratio of polynomials correlated to many bivariate polynomials
having small Mahler measure introduced by Boyd and Mossinghoff.

Résumé

Nous introduisons une suite P; de polynémes réciproques unitaires a coefficients entiers ayant les
coefficients centraux fixes ainsi que les coefficients périphériques. Nous prouvons que le rapport du
nombre de racines non unimodulaires de P; sur son degré d a une limite L lorsque d tend vers ’infini.
Nous montrons que si les coefficients d’un polynéme peuvent étre arbitrairement grands en module
alors L peut étre arbitrairement proche de 0. Il semble raisonnable de croire que si les coefficients
sont bornés, alors ’analogue de la conjecture de Lehmer est vrai : soit L = 0, soit il existe un écart
tel que L ne puisse pas étre arbitrairement proche de 0. Nous présentons un algorithme pour le
calcul du rapport limite et une méthode numérique pour son approximation. Nous avons estimé le
rapport limite pour une famille de polynémes déduits des puissances d’un nombre de Salem donné.
Nous avons calculé le rapport limite des polynémes corrélés a de nombreux polynémes bivariés
ayant une petite mesure de Mahler introduits par Boyd et Mossinghoff.
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1. Introduction

d—1

The Mahler measure M (P) of a polynomial P(z) = agz® + ag_129* + --- + a1z + ag € Z[z] having

aq # 0 and zeros aq, s, ..., aq is defined as
d
M(P(z)) := |ag| | [ max(1, |ay)).
i=1

J
Let I(P) denote the number of complex zeros of P(x) which are < 1 in modulus, counted with multi-
plicities. Let U(P) denote the number of zeros of P(z) which are = 1 in modulus, (again, counting with
multiplicities). Such zeros are called unimodular. Let E(P) denote the number of complex zeros of P(x)
which are > 1 in modulus, counted with multiplicities. Then it is obviously that I(P)+U(P)+ E(P) = d.
A Pisot number can be defined as a real algebraic integer greater than 1 having its minimal polynomial
P(z) of degree d such that I(P) = d — 1. The minimal polynomial of a Pisot number is called Pisot
polynomial. A Salem number is a real algebraic integer > 1 having the minimal polynomial P(x) of
degree d such that U(P) =d —2 > 1, I(P) = 1. We say that a polynomial of degree d is reciprocal if
P(z) = 2%P(1/z).

Definition 1.1 A polynomial P(x) € Z[x] is a Salem polynomial if it is reciprocal and can be written

P(z) = A(z) - R(x)

where A(x) is the product of (irreducible) cyclotomic polynomials and R(x) is the minimal polynomial of
a Salem number.

If the moduli of the coefficients are small then a reciprocal polynomial has many unimodular roots. A
Littlewood polynomial is a polynomial all of whose coefficients are 1 or —1. Mukunda [13] showed that
every self-reciprocal Littlewood polynomial of odd degree at least 3 has at least 3 zeros on the unit circle.
Drungilas [6] proved that every self-reciprocal Littlewood polynomial of odd degree n > 7 has at least 5
zeros on the unit circle and every self-reciprocal Littlewood polynomial of even degree n > 14 has at least
4 unimodular zeros. In [1] two types of very special Littlewood polynomials are considered: Littlewood
polynomials with one sign change in the sequence of coefficients and Littlewood polynomials with one
negative coefficient. The numbers U(P) and I(P) of such Littlewood polynomials P are investigated In
[2] Borwein, Erdélyi, Ferguson and Lockhart showed that there exists a cosine polynomial Z 1 cos(n, )
with the n,, integral and all different so that the number of its real zeros in [0, 27) is O(Ng/lo(log N)/5)
(here the frequencies n,,, = n,,(N) may vary with N). However, there are reasons to believe that a cosine
polynomial Zzzl cos(n,,0) always has many zeros in the period.

Clearly, if o, is a root of a reciprocal P(x) then 1/«; is also a root of P(z) so that I(P) = E(P). Let
C(P) = % be the ratio of the number of nonunimodular zeros of P to its degree. Actually, it is
the probability that a randomly chosen zero is not unimodular, and C(P) = @.

Here we will investigate a special sequence of polynomials. Let n, k, | ag,a1,...,a, by,b1,...,b; be
integers such that 2n > k > 0,1 > 0, and let P5,49;(x) be the monic, reciprocal polynomial with integer
coefficients

k
P2n+21 Zb < ntj xn1+j> + ag + Zaj (;1:5 + xlj) . (1)

3=0 j=1
We should remark that we have already studied in [16] the special case of (1) for [ = 0, by = 1. We
are looking for sequences (Pa,12;) such that the ratio C'(Pa,42;) has a limit when n tends to oo and
0 < limy o0 C(Papyor) < 1. If (Pyy49;) is a sequence of Salem polynomials then this limit is trivially 0.
Salem (see [14] Theorem IV, p.30) has found such a sequence. He discovered a simple way to construct
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two infinite sequences of Salem polynomials from a Pisot polynomial. The following example gives one of
them.

Example 1 If ' 4+ bj_12'~' + - 4+ by is a Pisot polynomial, by = 1, k = ag = 0, then (1) is a sequence
of Salem polynomials.

Let the Pisot polynomial in Example 1 be the minimal polynomial of a Pisot number . We should
remark that Salem proved in [15] that the family of Salem numbers associated to the family of Salem
polynomials in the Example 1 tends to 6. Such family of Salem polynomials is not unique; the classification
of all the families of Salem numbers converging to 6 is unknown, and it constitutes a very difficult problem
[11]. There is much we do not know about the distribution of Salem numbers on (1, 00) but it is believed
that only a finite number of Salem numbers are less than 1.3 and the Lehmer conjecture (see [12] p. 23.)
suggests that none of them is less than 1.176.

Main Theorem If k,l > 0 are integers then for all fized integers a;, j = 0,1,...,k and for all fized
integers b in (1) such that bj =b;_;, 7 =0,1,...,1 the limit lim,,_,oc C(Pant21) exists.

Main Theorem enables us to introduce the following

Definition 1.2 Let the limit of C(Papyo1) when n tends to infinity be called limit ratio and denoted
LC(Pynya1).

In the second section we present the proof of Main Theorem. In Example 1 LC(Pa;,4.9;) can be arbitrarily
close to 0 as n — oo but the condition b; = b;—; is false. In Example 2 the condition b, = b,—; is true,
LC(Pan421) can be arbitrarily close to 0 but the bjs are unbounded. We did not find an example of
sequence LC(Pzy,+9;) which satisfies the condition b; = b;_;, with b;, j = 0, ..., ! uniformly bounded in
modulus and LC(Pa,49;) arbitrarily close to 0. So we conjecture that such a sequence does not exist,
in Conjecture 3.1. In the third section we establish the connection between the Mahler measure and the
limit ratio and we calculate the limit ratio for many families of polynomials with small Mahler measure
introduced by Boyd and Mossinghoff.

2. The Limit Ratio

The Main Theorem is a generalisation of Theorem 2.1 which we proved in [16], more precisely Theorem
2.1 can be obtained from the Main Theorem if we take [ = 0.

PROOF. (of Main Theorem) The theorem will be proved if we show that 1 — C(Pap,42;) has a limit

when n tends to co. Since 1 — C(Pspt91) = %ﬁ;l)

The equation Ps,19;(z) = 0 is equivalent to

we have to count the unimodular roots of Pay,y2(z).

1 k
. 1 : 1
n+l ) n+ _antl | . ;
x Eob] (x ]+xn+j)—x ag E a; <I7+xj> . (2)
i=

Jj=1

Let B(z) be the polynomial on the left side and let A(x) be the polynomial on the right side of the
previous equation.
Since b; = b—j, 7 =0,1,...,1 we have



l
; 1
— entl . +
B(z) =" ij (x" T+ xn+j>
J=0

MN

bj (x2n+l+j + xlfj)

<.
~ |l
=)

l
bj$2n+l+j + E bl_j.%'l_j
=0

<.
I
o

MN

.
(=)

= bz’ (z®"F 4 1)
3=0

!
= (x2"+l + 1) Z bj:rj

Jj=0

!
= (xQ”H +1) z'/? ijxjfl/z.
=0

Finally it follows that
!

1 .
B(z) = 2" (w"*” P+ WW) > byl (3)
j=0

Since we have to find unimodular roots we use the substitution z = ¢ in the equation (2). If [ is even
then we have

1/2—1
B(e') = "Dt cos|(n + 1/2)1] Z 20 cos[(1/2 — j)t] + bz | - (4)
§=0
If [ is odd then it follows from (3)
(1-1)/2
B(e') = e "'2cos[(n+1/2)t] | > 2bjcos[(1/2— j)t] | . (5)
§=0

From the substitution z = e* it follows that z is unimodular if and only if ¢ is real so that we have to
count the real roots of B(e™) = A(e'), (¢ € [0,27)). We denote with E(t) the function defined by terms
enclosed within brackets of (4) or of (5) i.e.

1/2—1
Z 205 cos(l/2 — j)t +byo if I is even,
E(t) =1 (5 (6)
Z 2b; cos(l/2 — j)t if 1 is odd.
7=0

If t € R we can divide the equation B(e') = A(e™) with 2"+t £ 0 and obtain
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k
cos[(n+ 1/2)t|E(t) = —ap/2 — Zaj cos jt

Let T be the graph of E(t), let T’y be the graph of f1(t) = cos(n + 1/2)t E(t). Obviously for all n I'; is
settled between graphs of E(t) and —FE(t) and in certain points I touches I'y. For that reason we call
E(t) the envelope of f1(t). Let 'y be the graph of

k
fa(t) == —ap/2 — Zaj cos jt. (7

j=1
Then U(P) is equal to the number of intersection points of I'y and I's. These intersection points are
obviously settled between curves y = —|E(t)| and y = |E(t)|. Graph I'y of the continuous function f,
and graph I' are fixed i.e. they do not depend on n, therefore there are r subintervals I;, such that r is
a finite integer, I; = [, 55], 0 < Bj—1 < a; < Bj < a;j41 < 2m, such that if ¢t € I; then |fa(t)| < |E()],

where «;, 3; are solutions of

[E®)] = [f2(t)]. (8)

We need the following theorem of Erdés and Turan [7] to finish the proof of Main Theorem.
Theorem 2.1 (Erdds, Turin) Let F(x) = ZZ:O arx® € Clz] with agag # 0, and let

N(F;a,B) = #{roots r € C of F with o < arg(r) < 5}.
Then for all 0 < a < f < 27,

‘N(F;a75)_6—a‘<16 o lao| + - - - + |aa] 1/2
d 21 7\/& S 1/|aoad| '

Using Theorem 2.1 of Erd6s and Turan we obtain

N(P2n+2l;aj,ﬂj) B Bj e < 16 g 2Zj:0|bj|+|a0|+22j:1iaji
2n + 21 2r |~ V2n+ 2 V/[bobi] '

If we introduce a constant

1/2
D i frog (2 sz sl laol + 2555l
- V[bobi]

then it follows that

Bi—oj 16 5 NPnsos,By) fi—ay 16 5
2m Voan+20 T 2n + 21 - 27 V2n + 21
If we summarize the previous inequalities for j =1,2,...,r then we get

BJ — P2n+2l7 Qg Bj 5] 16
— < +r D
; 27 \/2n—|—2 Z 2n + 21 _; 27 V2n + 21

Finally we have to notice that ijl N(P2n+21; a;, ;) = U(Papto) and find the limit when n tends to
infinity. Using the Theorem 2.1 it follows that

P2n+21 5]

. 16 _
becaiélse lim, oo 7 2n+2lD =0.



It is well known that S (z) = 2% — 23 — 2% — 2 + 1 is a Salem polynomial having two real roots: a Salem

number v > 1, 1/ and two complex unimodular roots 6, 6. Let Sm(z) = xt+ bl’mx?’ + bg,mas2 +b3mr+1
be the Salem polynomial of the Salem number " so that its coefficients should be bg ,, = ba . =1,

bl,m = bS,m = —(VM + 1/’7m + em + ém% (9)
bam = 2+ 0" ™ 407 4™ Oy 7 [y (10)
Ezample 2 Let T5y, 45, denote

4
Tonysm(z) =2 + § :bj>m <x T xn+j> 2
=0

Theorem 2.2 With the notation introduced in Example 2 the following is true
hm LC(TQ»,H_&m(JT)) = 0
m—o0

PROOF. In this example | = 4 is even, k = 0, ag = 2. We have to use (6) to calculate the envelope:
E(t) = 2cos(2t) + 2bq m, cost + by . We have to solve (8) that is equivalent with E,,(¢) = 1 or E,,(t) =
—1. Since cos2t = 2cos?t — 1 the equations are quadratic in cos(t), so that, solving E,,(t) = £1, we

take the solutions in [—1,1]. From E,,(t) = 1 we get cos o, = i (_bl,m — \/b%,m — 4by  + 12). From

E,.(t) = —1 we get cos S, = % <7b1_,m - \/bim — 4by , + 4). It remains to calculate

2
lim (cos B, —cosa,,) = lim .
m—ro0 m—ro0 \/b%,m _ 4b27m + 12 + \/b%’m _ 4b27m + 4

To show that the last limit is 0 it is sufficient to show that b7 ,, — 4bs . tends to +oo when m — oco.
Using (9) and (10)
BT gy — Abom = (Y27 = 290" — 290™) 4 (1/77 = 207 /4" = 20 /4" + 07T + 07+ 20™6™ — 6)
The terms inside the first pair of parentheses are equal to
(Y™ = 20™ = 20) > 4™ (™ - 4)

so that they tend to +o0o when m — oo. Since all terms inside the second pair of parentheses are bounded
or tend to zero it follows that b ,,, — 4ba m tends to +o0o when m — oo.

Let us now consider the case by = by = --- = b = 1. To determine the envelope in Theorem 2.5 we
need the following lemmas which can be easily proved.
Lemma 2.3
@2m+ 1)t

t m
sin§ Z2cosjt+1 = sin 2

j=1

PROOF.

m m
t
sin§ jEﬂQcosjt—i— 1| = sini jE,OQCOSjt_ 1



t i t
:s1n§ ZZcosgt 751115

=0

t 1)t t
:2cosm7sinw—sin§
) (2m+1)t+, t .t
=sin ——* +sin — — sin —
2 2 2

2 1)t

:Smw

Lemma 2.4

t [ — 25 — 1)t
sin§ jX_;QCOS(JQ) = sinmt

PROOF.

The formula is obviously true for m = 1 because 2sin § cos & = sint. We suppose that the formula is
true for m = k i.e.

k .
t 27 — 1)t
sin 5 E 2 cos % = sin kt.

Jj=1
Using the product-to-sum formula it follows that the formula is true for m =k + 1:

k+1 .
t 27 — 1)t t 2k + 1)t
sin§ jEﬂZcos (2 ) zsinkt+231nfcosg

- 5 5 = sinkt + sin(k + 1)t — sin kt = sin(k + 1)¢.

We conclude recursively that the formula holds for every natural number m.

Theorem 2.5 Ifbg=by=---=b =1 in (1) then
(1)t
B(t) = ——— (1)
S1n 5
PROOF.
If [ is even then (6) gives
1/2—1
E(t)= Y 2cos[(l/2 - j)t] + 1.
j=0
If we change the index of summation J :=1[/2 — j and then reverse the order of summation we get
1/2
E(t)=> 2cosJt+1. (12)
J=1
Finally using Lemma 2.3 it follows that
gin (£
2
sin ¢

2
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If [ is odd then (6) gives
(I-1)/2
Z 2cos[(1/2 — 4)t].

§=0
If we change the index of summation J :=1/24[/2 — j and then reverse the order of summation we get

(141)/2

Z 2cos[(J — 1/2)t]. (13)

Finally using Lemma 2.4 we get
o (Dt

si
E(t)= ——32—
S111 5

In [5] Boyd and Mossinghoff introduced the following
Definition 2.6 Let () denote the polynomial (z —1)/(x — 1), and write

Pap(x,y) = 2B (o () + pp(z)y + 2P Apa(2)y?).
Ezample 3 Let Hopyoi(x) denote

l
Hanyo(z) = a0 ) <x v xn+j> !
=0

We can show that
Hopyoy(%) = Py i (z, 2" /2.

It is convenient to substitute [ = m — 1 in the previous example.
Theorem 2.7 If m is an integer greater than 1 then

o (m—1D)m i (m—1D)7
2 sin ~—; 2 sin
< LC(Hopiom— < __2m
m(2m +1) sing- (Hantom—2()) 6m —m  sin g
PROOF. Since by = b1 = --- = by,_1 in the previous example, we can use Theorem 2.5 to determine

the envelope: E,, (1)) = ——%. We have to solve (8) that is equivalent with |E,,(T)| = 1/2, T' € [0, 2]

because k =0, ag = 1. If we substltute T = 2t it follows that we have to solve
2| sinmt| = sint, t € [0,7]

because we have to determine the sum of length of all intervals where 2|sinmt| < |sint| on [0, 7]. Let G
be the graph of hy(t) = |sint| and let G be the graph of ho(t) = 2|sinmt|. Let L; be the line passing
through M; (— sin ”) with the slope 1, and let [; be the line passing through M; Wlth the slope —1 (see.
Fig. 1). Let g; be the tangent line of 2|sinmt| at N; (m70) with the slope 2m and let s; be the secant
line of 2| sinmt| passing through N; and S; (£ + Z-,1). Let Q; be the unique intersection point of Gy
and Go on the segment I; = [T /T 4 ™ ] Since 2 < 1 there is the unique intersection point P; of s;
and L;, and also the unique intersection point R; of g; and [;. On I; function hy increases and is concave
down so that if p;, g;, r; are distances from points P;, @);, R;, respectively, to the vertical line M;N;
then r; < g; < p;. To calculate pj, r; it is convenient to use horizontal translation of all these objects
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gj i

1 5 1

Pj

L Pi
9
— h(eTsin
l R hy(t)=2|sin mt|
f y
5
0.5} T
hy(t)=2|sin mt|

0 N;

Figure 1. The estimation of the length of an interval where 2|sinmt| < |sint|.

such that N; moves to the origin O. Then L; moves to L : y =t + sin % and s; moves to s} : y = Smy,
The solution t of the system of these two equations is equal to p; so that

sin %
Pj = Bm _
™
Also [; moves to I} 1 y = —t +sin % and g; moves to g; : y = 2mt. The solution ¢ of the system of the

last two equations is equal to r; so that



Jjm

sin m
r; = .
T om+1
Similarly, let @j be the unique intgrsection point of Gy and Gz on the segment I; = [% -5, %]
Let g; be the distances from point (); to the vertical line M;N;. Since the line z = 7 is the axis of

symmetry of G as well as of G it follows that q; = g,,—; thus the sum of length of all intervals where
m—1

2|sinmt| < |sint| on [0, 7] is equal to double Z?”:ll g;. It follows from r; < g; < p; that %ijl r; <
%Z;-nzl g5 < %27;1 pj so that

9 m—1 jﬂ' 9 m—1 9 m—1 jﬂ'
— in— < — < in —.
7r(2m+1)28mm quj 6m—r 2"

j=1 j=1 j=1

Finally if we use the formula for the sum of sines with arguments in arithmetic progression we obtain the
claim of the theorem.

O
Corollary 2.8 If A is an adherent point of the sequence (LC (P, 1()))m>1 then
2 i<t
w2 = T 3

PROOF. We can easily show that the sequence of the lower bounds in the claim of previous theorem

has the limit equal to % ~ 0.2026 and that the sequence of the upper bounds has the limit equal to

= ~0.2122 when m — oc.

Conjecture 2.1 The limit of the sequence in Corollary 2.8 exists with an approzimate value of:

lim LC(Py1()) ~ 0.209. (14)

3. Approximating lim,, ;. C(Pan+t21)

It is necessary to explain how we approximated the limit in (14). In the proof of Theorem 1 we actually
declared the following steps of an algorithm for determining lim,,_, C'(Papt21):

(i) determine all real roots ¢; of the equations fo(t) = E(t) and fo(t) = —E(t), where E(t), f2(t) are
defined in (6) and (7),
(i) arrange them as an increasing sequence 0 =ty < t1 < ... < t, = 2,
(iii) determine r intervals I; = [aj, ;] such that if a; < ¢ < B; then |fa(t)] < |E(¥)|, oj,8; €
{to,tl,...,tp},
(iv) calculate lim, o0 C(Pantar) = 1 = 325, (85 — a;)/(2m).
If we bring to mind (6) it follows that the equation f3(t) = £E(t) i.e. —ag/2 — 2?21 a; cos jt = £E(t)
is algebraic in cost so that ¢; can be expressed by arccosine of an algebraic real number a € [—1, 1] thus

only solutions of this kind should be taken into account.
If fo(t) is defined:

0, otherwise

folt) = {L (0] > |E@)

10



then
27

lim C(P2n+2l) = i fo(t)dt (15)

n—00 2w 0

We can approximate numerically the integral in (15) i.e. lim,,_, oo C'(Pan+21). Suppose the interval [0, 27]
is divided into p equal subintervals of length A¢ = 27/p so that we introduce a partition of [0,27] 0 =
to < t1 <...<tp,=2m such that t; — t;_1 = At. Then we chose numbers §; € [t;,t;_1] and count all &;
such that |f2(&;)] > |E(t), j =1,2,...,p. If there are s such §; then lim,,_,oc C(Papn421) is approximately
equal to %.

. 1
lim C(P2n+21) ~ —
n—oo p

where we chosed &; = 2j7/p.
If we introduce the substitution ¢t = 27w in (15) we get

1
lim C(P2n+21):/ fo(27ru)du:/ du. (16)
0 U

n—oo
where U = {u € [0,1] : |f2(27u)| > |E(27u)]|}.
The definition of the Mahler measure could be extended to polynomials in several variables. We recall
Jensen’s formula which states that fol log | P(e2™9)| df = log |ao| + Z?Zl log max(|a|,1) Thus

M(P) = exp {/01 log | (27| de} ,

so M(P) is just the geometric mean of |P(z)| on the torus T'. Hence a natural candidate for M (F) is

1 1
M(F) = exp {/ do; - / log |F(e¥™, ... €2mi0r)] der} .
0 0

Boyd and Mossinghoff in [5] listed in a table 48 bivariate polynomials having small Mahler measure. Here
we calculated the limit ratio of polynomials correlated to bivariate polynomials quadratic in y and added
them to the table. Flammang studied some other measures, defined for agebraic integers, in [9] [10].

If we bring to mind the calculation of the Mahler measure in Exercise 2.24 and especially in Exercise
2.25 in the new book of McKee and Smyth [12]:

M(P) = exp (/U log |f2(27TU)| + }/E,'QQZ(:Z)T) _ E2(27Tu) du)

where U = {u € [0,1] : |f2(27u)| > |E(27u)|} then we can determine the correlation between Mahler
measure and the limit ratio

LC(P) = /U du.

Table 1 presents fo(27u) and F(27u) for certain families of polynomials, quadratic in y. In Table 2 we
present limit points calculated in [5] of Mahler measure of bivariate polynomials P(z,y), quadratic in
1y, in ascending order. We complemented the table of Boyd and Mossinghoff by the limit points of the
ratio of number of nonunimodular roots of the polynomial P(z,2™) to its degree when n — co. As in
[5] polynomials P, y(x,v), Qub(z,y), Rap(®,Yy), Sape(z,y), defined in Table 1, are labeled as P(a,b),
Q(a,b), R(a,b), S(a,b,sgn(e)) respectively, in Table 2. Some polynomials are identified by the sequences,
for example the third smallest known limit point (1 + z) + (1 — 22 + 2%)y + (2® + 2)y?, is identified by
[++000, +0—0+, 000++], as in [5]. Polynomials in Table 2 are written explicitly in Table D.2 of [12]. We
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Table 1

f2(27u) and E(27u) for certain families of polynomials.

Family Definition f2(2mu) E(27u)

Py v(z,y) gmax(a—b,0) (Zj;; xJ + ZZ;;(I] xly + zb—e Zj;é :cij) sin (%ﬂ'u) 2sin (%ﬂ'u)
Qap(,y) gmax(@=b0)(1 4+ 2 4 (1 4 2%)y + «b=(1 + 2%)y? cos (gﬂu) 2 cos (%7”1‘>
Ry p(x,y) gmax(a=b0) (1 4 ga 4 (1 — gb)y — gb— (1 4 29)y? sin (%ﬂu) 2 cos (%ﬂu)
Sa.b,e(,y) 1+ (2% + e) (2P + €)y + 27092, e = +1 cos (GTH)TI'U,) + ecos (Z’*T“ﬂ'u) 1

excluded the polynomials not quadratic in y. It is interesting to compare the Mahler measure and the

limit ratio of polynomials in two variables.

(i) The Mahler measure is > 1 while the limit ratio is in [0, 1].

We showed in Example 2 and Theorem 2.2 that the limit ratio can be arbitrary close to zero. It is
clear that in this example the coefficients of the polynomials are unbounded. Our calculations show that
if the coefficients are bounded then the limit ratio can not be arbitrary close to zero. Also, Theorem 2.7

supports our opinion that the analogue of Lehmer’s conjecture is true:

Conjecture 3.1 If N is a natural number > 1 there is some ¢(N) > 0 such that any sequence Pay, o
of integer polynomials defined in (1), satisfying the condition b; = b;_;, having the coefficients < N in

modulus, that has the limit ratio strictly below ¢(N) has the limit ratio equal to 0.

Table 2: Limit points of Mahler measure and limit points of the
ratio of number of nonunimodular roots of a polynomial to its de-

gree.

Mabhler measure

The polynomial P 3 has the smallest Mahler measure and the smallest limit ratio.

Mabhler measures of two polynomials can be equal though their limit ratios are different (see examples
(2) and (2’) in Table 2.

Mabhler Measures of two polynomials increase while the corresponding limit ratios decrease.

The second smallest Mahler measure comes from P, ; and P; 3 while the second smallest limit ratio
corresponds to Ry 5.

Exact value of lim C(P), sequence
n—oo

1.11.2554338662666087457
2.]1.2857348642919862749
27.|1.2857348642919862749
3./1.3090983806523284595
4./1.3156927029866410935

6./1.3253724973075860349
7.11.3320511054374193142

Polynomial nh_)ngc C(P)
P

P(2, 3) (0.1328095098966884
P(2,1) (0.1608612465103325
P(1, 3) (0.3333333333333333

0.2970136797597501
P(3,5) |0.1646453474320021
P(3,4) [0.1739784246485862
P(2, 5) (0.2634504964561481

12

1- 2arccos(§ -3/
1 —2arccos(1/4)/7

1/3
[+++000, +0—0+, 000++]

4 arctan
v

L +
\/2\/94726\/ﬁ+4\/ﬁ713
—1—_74 arctan L
\/%\/ AP+

S

|



10.
11.
13.
15.
16.
17.
18.
19.
20.

21.
22.
23.
24.
26.
27.
28.
31.
32.
33.
34.
36.
37.
38.
39.
40.
41.
43.
44.

.[1.3323961294587154121
.[1.3381374319388410775

1.3399999217381835332
1.3405068829308471079
1.3500148321630142650
1.3511458956697046903
1.3524680625188602961
1.3536976494626355711
1.3567481051456008311
1.3567859884526454967
1.3581296324044179208

1.3585455903960511404
1.3592080686995589268
1.3598117752819405021
1.3598158989877492950
1.3602208408592842371
1.3627242816569882815
1.3636514981864992177
1.3645459857899151366
1.3646557293930641449
1.3650623157174417179
1.3654687370557201592
1.3661459663116649518
1.3665709746056369455
1.3668078899273126149
1.3668830708592258921
1.3669909125179202255
1.3677988580117157740
1.3681962517212729703
1.3682140096679950123

0.3814904582918582
0.1871346248477649
0.1784746137157699
0.1895159205822178
0.2403097841316317
0.1902698620670582
0.1860703555283188
0.1893226580984896
0.1964065801899085
0.1908351326172760
0.3755212901021780

0.1981783524823832
0.2295536290347317
0.1908185635976727
0.3638326121576760
0.1947758787175794
0.1976969967166677
0.3616163835316277
0.1940425569464528
0.2236027778291241
0.3360946113639976
0.2007692138817449
0.2014521139875612
0.2018615118309531
0.2020844014923849
0.1417550822341309
0.1970232013102869
0.1963614081210482
0.2199360577499605
0.2082012946810569

13

arccos (V17/4—1/4) /= +1/6

% |:7T — arccos 1+8 17

E

1—

— arccos

7]

2 Jarcsin(v/14/4) — arcsin(v/10/4)]

04—a;+08— 2/3+ 1— s, ag,an
roots of 3226 — 482* + 1622 +22 — 0.5
[++, +0———0+4,++]



45.11.3683434385467330804 0.3045732337814742([+-+00000, ++0—0++,00000++]
46.11.3687474425069274154| P(6, 7) |0.2014928273535877
47.11.3689491694959833864| P(7, 11) |0.1994880038265199
48.11.3697823199880122791| S(1, 9,+) |0.3622499773114010

Acknowledgements: I would like to thank the referee for many valuable remarks, comments and correc-
tions, especially for his observation that the Definition 1.1 of Salem polynomial (see [12] p. 112.) should
be taken for coherency.
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