Collected Item: “The number of nonunimodular roots of a reciprocal polynomial”
Врста публикације
Рад у часопису
Верзија рада
објављена верзија
Језик рада
енглески
Аутор/и (Милан Марковић, Никола Николић)
Dragan Stankov
Наслов рада (Наслов - поднаслов)
The number of nonunimodular roots of a reciprocal polynomial
Наслов часописа
COMPTES RENDUS MATHEMATIQUE
Издавач (Београд : Просвета)
Elsevier France ^Editions Scientifiques et Medicales
Година издавања
2023
Сажетак на енглеском језику
We introduce a sequence $P_{d}$ of monic reciprocal polynomials with integer coefficients having the central coefficients fixed as well as the peripheral coefficients. We prove that the ratio of the number of
nonunimodular roots of $P_{d}$ to its degree $d$ has a limit $L$ when $d$ tends to infinity. We show that if the coefficients of a polynomial can be arbitrarily large in modulus then $L$ can be arbitrarily close to $0$. It seems reasonable to believe that if the
coefficients are bounded then the analogue of Lehmer’s Conjecture is true: either $L=0$ or there exists a gap so that $L$ could not be arbitrarily close to $0$. We present an algorithm for calculating the limit ratio and a numerical method for its approximation.
We estimated the limit ratio for a family of polynomials deduced from the powers of a given Salem number. We calculated the limit ratio of polynomials correlated to many bivariate polynomials having small Mahler measure introduced by Boyd and Mossinghoff.
nonunimodular roots of $P_{d}$ to its degree $d$ has a limit $L$ when $d$ tends to infinity. We show that if the coefficients of a polynomial can be arbitrarily large in modulus then $L$ can be arbitrarily close to $0$. It seems reasonable to believe that if the
coefficients are bounded then the analogue of Lehmer’s Conjecture is true: either $L=0$ or there exists a gap so that $L$ could not be arbitrarily close to $0$. We present an algorithm for calculating the limit ratio and a numerical method for its approximation.
We estimated the limit ratio for a family of polynomials deduced from the powers of a given Salem number. We calculated the limit ratio of polynomials correlated to many bivariate polynomials having small Mahler measure introduced by Boyd and Mossinghoff.
Волумен/том или годиште часописа
Volume 361 (2023)
Број часописа
361 (G1)
Почетна страна
423
Завршна страна
435
DOI број
10.5802/crmath.422
ISSN број часописа
1631-073X e-ISSN:1778-3569
Кључне речи на српском (одвојене знаком ", ")
Algebraic integer; the house of algebraic integer; maximal modulus; reciprocal polynomial; primitive polynomial, Schinzel-Zassenhaus conjecture; Mahler measure; method of least squares; cyclotomic polynomials
Кључне речи на енглеском (одвојене знаком ", ")
Algebraic integer; the house of algebraic integer; maximal modulus; reciprocal polynomial; primitive polynomial, Schinzel-Zassenhaus conjecture; Mahler measure; method of least squares; cyclotomic polynomials
Линк
https://comptes-rendus.academie-sciences.fr/mathematique/item/10.5802/crmath.422.pdf
Шира категорија рада према правилнику МПНТ
M20
Ужа категорија рада према правилнику МПНТ
М23
Пројект у склопу кога је настао рад
174032
Степен доступности
Отворени приступ
Лиценца
All rights reserved
Формат дигиталног објекта
.pdf