Skip to main content
Пријава

Collected Item: “Concepts for Improving Machine Learning Based Landslide Assessment”

Врста публикације

Поглавље у монографији

Верзија документа

објављена

Наслов поглавља

Concepts for Improving Machine Learning Based Landslide Assessment

Језик

енглески

Аутор/и (Милан Марковић, Никола Николић)

Miloš Marjanović, Mileva Samardžić Petrović, Biljana Abolmasov, Uroš Đurić,

Наслов монографије (Наслов - поднаслов)

Natural Hazards GIS-based Spatial Modeling Using Data Mining Techniques, Advances in Natural and Technological Hazards Research 48

Уредник/ци монографије

H. R. Pourghasemi and M. Rossi

Издавач (Београд : Просвета)

Springer Nature Switzerland AG 2019

Година издавања

2019

Кратак опис поглавља

The main idea of this chapter is to address some of the key issues that were
recognized in Machine Learning (ML) based Landslide Assessment Modeling
(LAM). Through the experience of the authors, elaborated in several case studies,
including the City of Belgrade in Serbia, the City of Tuzla in Bosnia and Herzegovina, Ljubovija Municipality in Serbia, and Halenkovice area in Czech Republic, eight key issues were identified, and appropriate options, solutions, and some new concepts for overcoming them were introduced. The following issues were addressed: Landslide inventory enhancements (overcoming small number of landslide instances), Choice of attributes (which attributes are appropriate and pros and cons on attribute selection/extraction), Classification versus regression (which type of task is more appropriate in particular cases), Choice of ML technique (discussion of most popular ML techniques), Sampling strategy (overcoming the overfit by choosing training instances wisely), Cross-scaling (a new concept for improving the algorithm’s learning capacity), Quasi-hazard concept (introducing artificial temporal base for upgrading from susceptibility to hazard assessment), and Objective model evaluation (the best
practice for validating resulting models against the existing inventory). All of them
are followed by appropriate practical examples from one of abovementioned case studies. The ultimate objective is to provide guidance and inspire LAM community for a more innovative approach in modeling.

Почетна страна поглавља

27

Завршна страна поглавља

58

DOI број

https://doi.org/10.1007/978-3-319-73383-8_2

ISBN број монографије

978-3-319-73382-1

Географско подручје на које се односи поглавље

Srbija

Кључне речи на српском (одвојене знаком ", ")

"Katastar klizišta", "Podložnost", "Hazard", Mašinsko učenje", Uzorkovanje", "Validacija",

Кључне речи на енглеском (одвојене знаком ", ")

"Landslide inventory", "Susceptibility", "Hazard", "Machine learning", "Sampling", "Validation", "Cross-scaling"

Линк

https://doi.org/10.1007/978-3-319-73383-8_2

Шира категорија рада према правилнику МПНТ

M10

Ужа категорија рада према правилнику МПНТ

М14

Пројекат у оквиру кога је настало поглавље

TR36009

Ниво приступа

Затворени приступ

Лиценца

All rights reserved

Формат дигиталне датотеке

.pdf
Click here to view the corresponding item.