Skip to main content
Пријава

Collected Item: “Two approaches to compilation of bilingual multi-word terminology lists from lexical resources”

Врста публикације

Рад у часопису

Верзија рада

рецензирана верзија

Језик рада

енглески

Аутор/и (Милан Марковић, Никола Николић)

Branislava Šandrih, Cvetana Krstev, Ranka Stanković

Наслов рада (Наслов - поднаслов)

Two approaches to compilation of bilingual multi-word terminology lists from lexical resources

Наслов часописа

Natural Language Engineering

Издавач (Београд : Просвета)

Cambridge University Press (CUP)

Година издавања

2020

Сажетак на енглеском језику

In this paper, we present two approaches and the implemented system for bilingual terminology extraction that rely on an aligned bilingual domain corpus, a terminology extractor for a target language, and a tool for chunk alignment. The two approaches differ in the way terminology for the source language is obtained: the first relies on an existing domain terminology lexicon, while the second one uses a term extraction tool. For both approaches, four experiments were performed with two parameters being varied. In the experiments presented in this paper, the source language was English, and the target language Serbian, and a selected domain was Library and Information Science, for which an aligned corpus exists, as well as a bilingual terminological dictionary. For term extraction, we used the FlexiTerm tool for the source language and a shallow parser for the target language, while for word alignment we used GIZA++. The evaluation results show that for the first approach the F1 score varies from 29.43% to 51.15%, while for the second it varies from 61.03% to 71.03%. On the basis of the evaluation results, we developed a binary classifier that decides whether a candidate pair, composed of aligned source and target terms, is valid. We trained and evaluated different classifiers on a list of manually labeled candidate pairs obtained after the implementation of our extraction system. The best results in a fivefold cross-validation setting were achieved with the Radial Basis Function Support Vector Machine classifier, giving a F1 score of 82.09% and accuracy of 78.49%.

Број часописа

First View

Почетна страна

1

Завршна страна

25

DOI број

10.1017/S1351324919000615

ISSN број часописа

1351-3249

Кључне речи на српском (одвојене знаком ", ")

Linguistics and Language,Software,Artificial Intelligence,Language and Linguistics

Кључне речи на енглеском (одвојене знаком ", ")

Linguistics and Language,Software,Artificial Intelligence,Language and Linguistics

Линк

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S1351324919000615

Шира категорија рада према правилнику МПНТ

M20

Ужа категорија рада према правилнику МПНТ

М22

Пројект у склопу кога је настао рад

47003

Степен доступности

Приступ са лозинком

Лиценца

All rights reserved

Формат дигиталног објекта

.pdf
Click here to view the corresponding item.