Using Lexical Resources for Irony and Sarcasm Classification

Објеката

Тип
Рад у зборнику
Верзија рада
објављена верзија
Језик
енглески
Креатор
Miljana Mladenović, Cvetana Krstev, Jelena Mitrović, Ranka Stanković
Извор
Proceedings of the 8th Balkan Conference in Informatics (BCI '17)
Издавач
New York, NY, USA, : ACM
Датум издавања
2017
Сажетак
The paper presents a language dependent model for classification of statements into ironic and non-ironic. The model uses various language resources: morphological dictionaries, sentiment lexicon, lexicon of markers and a WordNet based ontology. This approach uses various features: antonymous pairs obtained using the reasoning rules over the Serbian WordNet ontology (R), antonymous pairs in which one member has positive sentiment polarity (PPR), polarity of positive sentiment words (PSP), ordered sequence of sentiment tags (OSA), Part-of-Speech tags of words (POS) and irony markers (M). The evaluation was performed on two collections of tweets that had been manually annotated according to irony. These collections of tweets as well as the used language resources are in the Serbian language (or one of closely related languages --Bosnian/Croatian/Montenegrin). The best accuracy of the developed classifier was achieved for irony with a set of 5 features -- (PPR, PSP, POS, OSA, M) -- acc = 86.1%, while for sarcasm the best results were achieved with the set (R, PSP, POS, OSA, M) -- acc = 72.8.
број страница
8
Шира категорија рада
M30
Ужа категорија рада
M33
Права
Отворен приступ
Лиценца
Creative Commons – Attribution-NonComercial-No Derivative Works 4.0 International
Формат
.pdf
Скупови објеката
Ранка Станковић
Radovi istraživača

Miljana Mladenović, Cvetana Krstev, Jelena Mitrović, Ranka Stanković. "Using Lexical Resources for Irony and Sarcasm Classification" in Proceedings of the 8th Balkan Conference in Informatics (BCI '17), New York, NY, USA, : ACM (2017). https://doi.org/