Using Lexical Resources for Irony and Sarcasm Classification
Објеката
- Тип
- Рад у зборнику
- Верзија рада
- објављена верзија
- Језик
- енглески
- Креатор
- Miljana Mladenović, Cvetana Krstev, Jelena Mitrović, Ranka Stanković
- Извор
- Proceedings of the 8th Balkan Conference in Informatics (BCI '17)
- Издавач
- New York, NY, USA, : ACM
- Датум издавања
- 2017
- Сажетак
- The paper presents a language dependent model for classification of statements into ironic and non-ironic. The model uses various language resources: morphological dictionaries, sentiment lexicon, lexicon of markers and a WordNet based ontology. This approach uses various features: antonymous pairs obtained using the reasoning rules over the Serbian WordNet ontology (R), antonymous pairs in which one member has positive sentiment polarity (PPR), polarity of positive sentiment words (PSP), ordered sequence of sentiment tags (OSA), Part-of-Speech tags of words (POS) and irony markers (M). The evaluation was performed on two collections of tweets that had been manually annotated according to irony. These collections of tweets as well as the used language resources are in the Serbian language (or one of closely related languages --Bosnian/Croatian/Montenegrin). The best accuracy of the developed classifier was achieved for irony with a set of 5 features -- (PPR, PSP, POS, OSA, M) -- acc = 86.1%, while for sarcasm the best results were achieved with the set (R, PSP, POS, OSA, M) -- acc = 72.8.
- број страница
- 8
- doi
- 10.1145/313627
- Шира категорија рада
- M30
- Ужа категорија рада
- M33
- Права
- Отворен приступ
- Лиценца
- Creative Commons – Attribution-NonComercial-No Derivative Works 4.0 International
- Формат
Miljana Mladenović, Cvetana Krstev, Jelena Mitrović, Ranka Stanković. "Using Lexical Resources for Irony and Sarcasm Classification" in Proceedings of the 8th Balkan Conference in Informatics (BCI '17), New York, NY, USA, : ACM (2017). https://doi.org/