The number of unimodular roots of some reciprocal polynomials

Објеката

Тип
Рад у часопису
Верзија рада
објављена верзија
Језик
енглески
Креатор
Dragan Stankov
Извор
Cmptes rendus mathematique
Датум издавања
2020
Сажетак
We introduce a sequence P2n of monic reciprocal polynomials with integer coefficients having the central coefficients fixed. We prove that the ratio between number of nonunimodular roots of P2n and its degree d has a limit when d tends to infinity. We present an algorithm for calculation the limit and a numerical
method for its approximation. If P2n is the sum of a fixed number of monomials we determine the central coefficients such that the ratio has the minimal limit. We generalise the limit of the ratio for multivariate polynomials. Some examples suggest a theorem for polynomials in two variables which is analogous to Boyd’s
limit formula for Mahler measure.
том
358
Број
2
почетак странице
159
крај странице
168
doi
10.5802/crmath.28
issn
1778-3569
Subject
Algebraic integer, the house of algebraic integer, maximal modulus, reciprocal polynomial, primitive polynomial, Schinzel-Zassenhaus conjecture, Mahler measure, method of least squares, cyclotomic polynomials
Шира категорија рада
M20
Ужа категорија рада
М23
Је дио
174032
Права
Одложени приступ
Лиценца
All rights reserved
Формат
.pdf
Скупови објеката
Драган Станков
Radovi istraživača

Dragan Stankov. "The number of unimodular roots of some reciprocal polynomials" in Cmptes rendus mathematique (2020). https://doi.org/10.5802/crmath.28

This item was submitted on 29. октобар 2021. by [anonymous user] using the form “Рад у часопису” on the site “Радови”: http://romeka.rgf.rs/s/repo

Click here to view the collected data.