A necessary and sufficient condition for an algebraic integer to be a Salem number
Објеката
- Тип
- Рад у часопису
- Верзија рада
- објављена верзија
- Језик
- енглески
- Креатор
- Dragan Stankov
- Извор
- Journal de theorie des nombres de Bordeaux
- Датум издавања
- 2019
- Сажетак
-
We present a necessary and sufficient condition for a root greater
than unity of a monic reciprocal polynomial of an even degree at least four,
with integer coefficients, to be a Salem number. This condition requires that
the minimal polynomial of some power of the algebraic integer has a linear
coefficient that is relatively large. We also determine the probability that an
arbitrary power of a Salem number, of certain small degrees, satisfies this
condition. - том
- 31
- Број
- 1
- почетак странице
- 215
- крај странице
- 226
- doi
- 10.5802/jtnb.1076
- issn
- 2118-8572
- Subject
- Algebraic integer, the house of algebraic integer, maximal modulus, reciprocal polynomial, primitive polynomial, Schinzel-Zassenhaus conjecture, Mahler measure, method of least squares, cyclotomic polynomials
- Шира категорија рада
- M20
- Ужа категорија рада
- М23
- Је дио
- 174032
- Права
- Одложени приступ
- Лиценца
- All rights reserved
- Формат
Dragan Stankov. "A necessary and sufficient condition for an algebraic integer to be a Salem number" in Journal de theorie des nombres de Bordeaux (2019). https://doi.org/10.5802/jtnb.1076
This item was submitted on 29. октобар 2021. by [anonymous user] using the form “Рад у часопису” on the site “Радови”: http://romeka.rgf.rs/s/repo
Click here to view the collected data.