A necessary and sufficient condition for an algebraic integer to be a Salem number

Објеката

Тип
Рад у часопису
Верзија рада
објављена верзија
Језик
енглески
Креатор
Dragan Stankov
Извор
Journal de theorie des nombres de Bordeaux
Датум издавања
2019
Сажетак
We present a necessary and sufficient condition for a root greater
than unity of a monic reciprocal polynomial of an even degree at least four,
with integer coefficients, to be a Salem number. This condition requires that
the minimal polynomial of some power of the algebraic integer has a linear
coefficient that is relatively large. We also determine the probability that an
arbitrary power of a Salem number, of certain small degrees, satisfies this
condition.
том
31
Број
1
почетак странице
215
крај странице
226
doi
10.5802/jtnb.1076
issn
2118-8572
Subject
Algebraic integer, the house of algebraic integer, maximal modulus, reciprocal polynomial, primitive polynomial, Schinzel-Zassenhaus conjecture, Mahler measure, method of least squares, cyclotomic polynomials
Шира категорија рада
M20
Ужа категорија рада
М23
Је дио
174032
Права
Одложени приступ
Лиценца
All rights reserved
Формат
.pdf
Скупови објеката
Драган Станков
Radovi istraživača

Dragan Stankov. "A necessary and sufficient condition for an algebraic integer to be a Salem number" in Journal de theorie des nombres de Bordeaux (2019). https://doi.org/10.5802/jtnb.1076

This item was submitted on 29. октобар 2021. by [anonymous user] using the form “Рад у часопису” on the site “Радови”: http://romeka.rgf.rs/s/repo

Click here to view the collected data.