On the distribution modulo 1 of the sum of powers of a Salem number
Објеката
- Тип
- Рад у часопису
- Верзија рада
- објављена верзија
- Језик
- енглески
- Креатор
- Dragan Stankov
- Извор
- Comptes rendus Mathematique
- Датум издавања
- 2016
- Сажетак
- It is well known that the sequence of powers of a Salem number θ, modulo 1, is dense in the unit interval, but is not uniformly distributed. Generalizing a result of Dupain, we determine, explicitly, the repartition function of the sequence , where P is a polynomial with integer coefficients and θ is quartic. Also, we consider some examples to illustrate the method of determination.
- том
- 354
- издање
- 6, June
- почетак странице
- 569
- крај странице
- 576
- doi
- 10.1016/j.crma.2016.03.012
- issn
- 1631-073X
- Subject
- Algebraic integer, the house of algebraic integer, maximal modulus, reciprocal polynomial, primitive polynomial, Schinzel-Zassenhaus conjecture, Mahler measure, method of least squares, cyclotomic polynomials
- Шира категорија рада
- M20
- Ужа категорија рада
- М23
- Права
- Одложени приступ
- Лиценца
- All rights reserved
- Формат
Dragan Stankov. "On the distribution modulo 1 of the sum of powers of a Salem number" in Comptes rendus Mathematique (2016). https://doi.org/10.1016/j.crma.2016.03.012
This item was submitted on 29. октобар 2021. by [anonymous user] using the form “Рад у часопису” on the site “Радови”: http://romeka.rgf.rs/s/repo
Click here to view the collected data.