The alternative to Mahler measure of polynomials in several variables

Објеката

Тип
Саопштење са скупа штампано у изводу
Верзија рада
објављена
Језик
енглески
Креатор
Dragan Stankov
Извор
The book of abstracts XIV symposium "mathematics and applications” Belgrade, Serbia, December, 6–7, 2024
Уредник
Miljan Knežević, Aleksandra Delić
Издавач
Univerzitet u Beogradu, Matematički fakultet
Датум издавања
2024
Сажетак
We introduce the ratio of the number of roots of a polynomial Pd, greater than one in modulus, to its degree d as an alternative to Mahler measure. We investigate some properties of the alternative. We generalise this definition for a polynomial in several variables using Cauchy’s argument principle. If a polynomial in two variables do not vanish on the torus we prove the theorem for the alternative which is analogous to the Boyd-Lawton limit formula for Mahler measure. We determine the exact value of the alternative of 1 + x + y and 1+x+y +z. Numerical calculations suggest a conjecture for the exact value of the alternative of such polynomials having more than three variables.
почетак странице
43
крај странице
43
isbn
978-86-7589-197-0
Subject
mahler measure, argument principle, Boyd-Lawton limit formula
COBISS број
158252041
Шира категорија рада
М60
Ужа категорија рада
М64
Је дио
Partially supported by Serbian Ministry of Education and Science, Project 174032
Права
Отворени приступ
Лиценца
All rights reserved
Формат
.pdf
Скупови објеката
Драган Станков
Radovi istraživača

Dragan Stankov. "The alternative to Mahler measure of polynomials in several variables" in The book of abstracts XIV symposium "mathematics and applications” Belgrade, Serbia, December, 6–7, 2024 , Univerzitet u Beogradu, Matematički fakultet (2024)

This item was submitted on 9. јануар 2025. by [anonymous user] using the form “Рад у зборнику радова” on the site “Радови”: http://romeka.rgf.rs/s/repo

Click here to view the collected data.