Semantic Textual Similarity of Courses Based on Text Embeddings

Објеката

Тип
Рад у зборнику
Верзија рада
објављена
Језик
енглески
Креатор
Olivera Kitanović, Aleksandra Tomašević, Mihailo Škorić, Ranka Stanković, Ljiljana Kolonja
Извор
Lecture Notes in Networks and Systems
Издавач
Springer Nature Switzerland
Датум издавања
2024
Сажетак
This paper explores the application of textual embeddings to measure semantic similarity between educational courses’ curriculums, aiming to enhance the effectiveness of the next faculty accreditation. Leveraging state-of-the-art natural language processing techniques, we employ pre-trained embeddings to capture the semantic meaning of course descriptions. Our methodology involves transforming course curriculum texts into high-dimensional vector representations, enabling efficient and meaningful comparisons. We evaluate the proposed approach on a diverse dataset of course descriptions, employing established benchmarks for semantic textual similarity . The results demonstrate the effectiveness of our method in capturing nuanced semantic relationships between courses.
почетак странице
311
крај странице
322
doi
10.1007/978-3-031-71419-1_27
issn
2367-3370
Шира категорија рада
М30
Ужа категорија рада
М33
Права
Затворени приступ
Лиценца
All rights reserved
Формат
.pdf

Olivera Kitanović, Aleksandra Tomašević, Mihailo Škorić, Ranka Stanković, Ljiljana Kolonja. "Semantic Textual Similarity of Courses Based on Text Embeddings" in Lecture Notes in Networks and Systems, Springer Nature Switzerland (2024). https://doi.org/10.1007/978-3-031-71419-1_27

This item was submitted on 9. јануар 2025. by [anonymous user] using the form “Рад у зборнику радова” on the site “Радови”: http://romeka.rgf.rs/s/repo

Click here to view the collected data.